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Abstract--The temperature distribution in a laminar two-phase flow of a particle-fluid mixture over a 
heated horizontal plate is considered. Analytical expressions for the temperature fields and heat fluxes in 
each phase are obtained. It is found that the temperature distribution in a two-phase mixture flow differs 
from the corresponding single-phase case. Temperature profiles of the phases are independent of the 
distance along the plate and controlled by such mixture parameters as the particle size and concentration, 
the density ratio between the phases and the value of the Prandtl number. Moreover, the temperature fields 
of the phases in the mixture flow are independent of the horizontal velocity components and have a 
structure similar to that of a velocity profile of a single-phase flow over a flat plate at zero incidence with 
uniform suction. 
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1. I N T R O D U C T I O N  

The velocity distribution in a laminar two-phase mixture flow over an infinite plate has been 
considered previously by Apazidis (1985). The investigation was based on a continuum description 
of each phase, the solid particles and the carrier fluid, by means of separate equations of mass and 
momentum balance, the latter coupled through an interaction force between the phases. Such a 
continuum model is supplied by the works of, for example, Ishii (1975), Drew (1979, 1983) and 
Drumheller & Bedford (1980). 

This type of laminar two-phase mixture flow develops a boundary layer with a structure that 
is different from its single-phase counterpart. The continuity and momentum equations give a 
velocity distribution which is independent of the distance along the plate and has a simple structure, 
similar to that of a single-phase flow over a flat plate at zero incidence with uniform suction along 
the plate (e.g. Schlichting 1968). In both cases the constant streaming motion in the direction 
transverse to the plate allows the existence of a simple particular solution of the system of 
continuity and momentum equations for which the velocity is independent of the current length. 
In the present case, however, this velocity boundary layer exists at the interface between the dense 
sediment collected on the plate and the mixture above it. The interface and thus the boundary layer 
are propagating in the upward direction with a velocity of growth of the sediment layer, defined 
by a particle size and concentration and the density ratio between the phases. The thickness of this 
boundary layer may be measured in particle radii and depends on the particle concentration, the 
value of the particle Reynolds number and the density ratio between the phases. 

In the present work we will analyse the structure of the temperature distribution and heat transfer 
in a similar laminar two-phase streaming motion over a fiat infinite horizontal plate. We will add 
energy equations for each phase to the mass and momentum conservation equations. General forms 
of the energy equations may be found in the works of, for example, Ishii (1975), Bennon & 
Incropera (1987), Drumheller & Bedford (1980), Soo (1965) and Sha & Soo (1978). 

It is found that the form of the equations describing the temperature distribution in a two-phase 
mixture flow is, as in the single-phase case, the same as those of the velocity boundary layer, 
provided that the friction heat is neglected. The structure of the temperature distribution in 
a two-phase mixture flow differs in two important respects from its single-phase counterpart: 
(1) temperature profiles are independent of the distance along the plate; and (2) the temperature 
distribution in each phase is independent of the horizontal velocity components. The depth of 
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penetration of the temperature profiles in the two-phase case is controlled by the volume fraction 
of particles, the value of the particle Reynolds number, the density ratio of the phases and the value 
of the Prandtl number. 

2. GOVERNING EQUATIONS 

Consider a laminar flow of a mixture of solid spherical particles homogeneously distributed in 
a continuous carrier fluid or gas past a heated horizontal plate with a constant temperature Tw. 
The mixture is assumed to be in thermal equilibrium with the constituents having the common 
temperature T~ sufficiently far from the plate. The density difference between the phases in the 
presence of a gravity field perpendicular to the plate introduces separational motion of the 
phases in the vertical direction. This separational motion consists of a flow of heavy particles in 
the downward direction, forming a layer of dense sediment on the plate, and a flow of fluid in the 
opposite upward direction. This separational motion due to the density difference between the 
phases has been considered previously by Apazidis (1985). We will adopt this analysis here and 
make use of the calculated velocity distributions in the particle and fluid phases. The goal of the 
present work is to incorporate the energy equations for each constituent of the mixture in the 
model. Solutions of the latter together with the mass and momentum balance equations will give 
the temperature distributions in each phase as well as the separate and total heat fluxes in the 
mixture. 

The present analysis is based on the following assumptions: 

(1) The phases are viewed as two interacting continua obeying separate equations 
of balance of mass, momentum and energy. 

(2) The carrier phase is a viscous incompressible fluid. 
(3) The particles are solid spheres of equal radii. 
(4) The particle concentration is constant in time and space and "dilute" in the sense 

that the inter-particle collisions are insignificant and the particle flow is 
controlled by the momentum and energy exchange with the continuous carrier 
phase. 

(5) The flow of both phases is laminar, with particle Reynolds number < 1. 
(6) The particle size is large enough to neglect the Brownian motion. 

On the basis of these assumptions we formulate the balance equations governing the two- 
dimensional flow of a mixture past a heated horizontal plate. The flow is assumed to be 
homogeneous in the horizontal direction with the flow variables being functions of the vertical 
coordinate y and time t alone: 

Balance of  mass, 
particles 

and 

fluid 

Balance of  momentum, 
particles 

and 

~, + (~Vd)y = O; [1] 

- - ~ t  "3V [(1 - -  ~) l )c]y  = O. 

~t¢ (uo - ud )  ~pd(Ud, + VdUay) = ~f  (o~)-~5 

[2] 

[3] 

~pd(Vdt + VdVdy) = --~Pdg -- ~Py + ~f  (~ ) -~ (v¢ -- vd); [4] 
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and 

fluid 

IUC (Uc -- Ud) (I -- ot)p¢(u¢t + V~U~y) = (I -- ~)#cUvyy -- ~f(~) [5] 

and 

(1 oOpc(v¢t+v¢voy)=-(1 u)peg (1 ~)py+(1-oO#cv¢yy 9 #~ . . . . .  ~f(~t) ~ (v~ - Vd). [61 

Due to the assumption, (4), of a "dilute" particle phase consisting of solid spherical particles of 
equal size, homogeneously distributed in a continuous carrier phase, the stress tensor for the 
dispersed phase is taken to be zero (e.g. Ishii 1975; Drew 1983). The interaction force between the 
phases in the present model is the classical Stokes' drag on a single spherical particle modified by 
a correction factor f(~),  accounting for the finite volume fraction of the dispersed phase. 
Contributions to the interaction force between the phases, such as the shear-lift force (Saffman 
1965), the virtual mass force (Zuber 1964) and the spin-lift force (Rubinow & Keller 1961), are 
negligible compared to the Stoke's drag under the present assumption of small particle Reynolds 
number (Apazidis 1985, 1988). Tam (1969) obtained an expression forf(~)  in the case of spherical 
particles, 

Balance of  energy, 
particles 

4 + 3(8u - 3~2) I/2 + 3u 
f (~)  = (2 - 3~) 2 ~" [71 

O[pdCd(Ydt"r'13dTdy)=~9-~f(oO[(Uc--Ud)2"~-(Oc--Od)2]-[ - 3 a~---~ ~(Y¢ - Td); [8] 

fluid 

(1 - ~)poco(To, + vo Toy) = (1 - ~)~(uoy) ~ + (1 - ~)To. 

9/zc 
-I'(1--~)~'~f(oO[(Uc--Ud)2-1-(Vc--Vd)2]--3 ¢z(Tc- Td). [9] 

Similarly to Ishii et al. (1987), we apply the general forms of the energy equations to the 
particle-fluid flow under the present assumptions. The first term on the r.h.s, of [8] represents the 
dissipation heat due to the relative motion between the phases and the second term is the heat flux 
between the phases. Here ¢ (0 ~< ~ ~< 1) is a dimensionless parameter introduced to apportion the 
dissipation heat between the phases (Wallis 1969). In the present work, however, we will not be 
forced to define the value of this parameter since the dissipation terms will subsequently be 
neglected. 

In [1]-[9] above the following nomenclature applies: subscripts---d, c and t, y indicate dispersed 
or continuous phase and partial derivatives with respect to time and vertical coordinate, 
respectively; independent variables--t, y, a are time, vertical coordinate and particle radius, 
respectively; dependent variables---~, p, u, v, T, p are volume fraction of particles, density, velocity 
components, temperature and pressure, respectively; and constants--/z, 2, c and g are viscosity, 
thermal conductivity, specific heat and acceleration due to gravity, respectively. 

Next we introduce the following set of dimensionless parameters: 

ga2y ga2~ T -  T~ 
y . = Y ,  t . = g a Y t ,  u =  U, v =  V, 0 = ~ ,  p = - p ~ g y ( 1 - ~ P ) ;  [10] 

a v~ Vc v~ T w - T ~  

and 

y=P._~d, Re=ga2~a  pr=V~ E _ ( g a 2 v y  1 Co 
po ~o vo' ~--~' -\--~-~ / c o ( r ~ - r ~ ) '  k=-.co [11] 
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Where: v~ = #c/P~ and Xc = 2~/(pC Cc) are kinematic viscosity and thermal diffusivity, respectively and 
dimensionless numbers--7 ,  k, Re, Pr and E are density ratio, ratio of specific heats, particle 
Reynolds number, Prandtl number and Eckert number, respectively. 

Dropping, for convenience, the asterisk notation for y and t, we write the dimensionless form 
of the balance equations for each phase as follows: 

Balance o f  mass, 
particles 

and 

fluid 

Balance o f  momentum, 
particles 

and 

and 

fluid 

and 

~, + (~ Vd)y = O; [12] 

- ~ ,  + [(1 - ~ ) v &  = o. [131 

7 Re(Ud, + Vd Uay) = f ( e )  (U~ - -  Uay) [14] 
~t 

7Re(Va, + Vd Vdy) = --  1 + P + f ( ~ t )  (V~ - Vd); 

f (~ )  

[15l 

Re(U~, + Vc U~.,,) = U~yy - - -  

f(oO 

(U¢-  Ud) [161 

Re(V¢, + V~ V~y) = P + Vcyy - - -  (Vc-  Va). [17] 

Balance o f  energy, 
particles 

3 f (~ )  EPr[(U¢- Ud)2 + (V¢ - Vd)2]+(O¢--Od); [18] ~RePryk(Od, + VdOdy ) = ~ ~ (~ 

and 

fluid 

~ RePr(0~, + V~Oc~.) = IEPr(Ucy) 2 + (1 - ~) 3 ( ~ )  EPr[(U¢ - UO) 2 + (Vc -- V0) 2] 
g l - - O ~  

0~ 
l - ~ ( 8 c -  Od). [19] + ~ O~yy 1 - 

We now consider for a moment the orders of magnitude of the dimensionless numbers which 
form the coefficients of the momentum and energy equations. Consider some examples: 

(1) metal particles in gas: 7 ~ 104, Re ~ 0 . t ,  Pr ~0.7,  k ~ 0.45, E ~  10-6: 
(2) metal particles in water: 7 ~ 10, Re ~ 0.1, Pr ~ 7, k ~ 0.1, E ~ 10-10; 
(3) metal particles in oil: 7 ~ 10, Re ~0.1,  P r ~  1000, k ~0.3,  E ~  l0 -~°. 

The ratios of the coefficients in front of the dissipation terms to the other coefficients in the energy 
equations are of order of magnitude ~< l0 -6. We therefore neglect the dissipation terms in the 
subsequent analysis. 
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By analogy with Apazidis (1985), we assume that the concentration of the dispersed phase is 
constant 

= const, [20] 

which gives 

Vdy = Vc. v = 0 .  [21] 

We will likewise assume zero volumetric flux in the vertical direction, which is the case in the 
so-called batch sedimentation (e.g. Wallis 1969), i.e. 

0[Vd J¢ - (l -- ~)V¢ = 0. [22] 

The momentum equations for the particles will therefore reduce to 

~ RC(Udt + V d Udy ) --f-~) (Vc - ed) [23] 

and 

7ReVo, = - 1 + P + f (~ )  (V~ - Vd); [24] 

and those for the fluid to 

Re(U~, + VoUcy) = U ~ . - - -  f(~) (Uo- u.)  [25] 

and 

f(ot) 
= - - -  (Vo - Vd). [26] ReV~,  P + V ~ .  1 -  

The energy equations for each phase take the form: 

particles 

a n d  

~RePr~k(0d, + Vd0dy) = 0c -- 0d; [27] 

fluid 

IRePr(0o, + ro0o,) =  0o.- (8o - Od). [28] 

The sedimentation process in a mixture moving over an infinite horizontal plate has been 
considered previously (Apazidis 1985). We will adopt this analysis in the present work and make 
use of the calculated velocity distribution of the phases in order to obtain temperature fields by 
means of the energy equations [27] and [28]. 

Here in brief are the main items of the cited analysis. The density difference between the 
constituents of the mixture introduces separational motion of the phases in the vertical direction, 
parallel to the direction of the gravity field. This motion is a combination of the particle motion 
in the downward direction, forming a growing layer of dense sediment on the plate, and the motion 
of the fluid in the opposite, upward direction. Considering the mass balance over the discontinuity 
surface between the dense sediment collected on the plate and the mixture above it, the velocity 
of propagation of the interface in the upward direction is evaluated. Since the boundary conditions 
for the mixture flow are formulated at the moving interface, a new coordinate system with a 
horizontal axis coinciding with the interface and thus propagating in the upward direction is 
introduced. Analytical expressions for the vertical and horizontal velocity components of the 
particulate and fluid phases are then obtained. 

I,IMF 16/3--I 
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Assuming further that the vertical motion of  the phases imposed by the gravity field has reached 
its stationary state, i.e. Vd, = V~, = 0, and using [22], [24] and [26], one obtains the following 
expressions for the vertical velocity components: 

~ ( 1  - oO 2 
Vd = [29] 

f ( ~ )  

and 

and for the velocity of  the interface 

Vc = °~2(1 - ~)', [30] 
f ( ~ )  

0~2(1 -- ~z) 2 
V - (~M -- ~)f(~) ' [31] 

where ~M is the volume fraction of particles in the dense sediment (~0 .6  for spheres). 
The use of the new coordinate system propagating upwards with the velocity of  the interface 

V will introduce a transformation of  the independent variables t and y to the new variables t and q, 
where 

rl = y - V t .  [32] 

The energy equations [27] and [28] are then transformed to the following forms: 

particles 

Ad[Od, - -  ( V  - -  Vd)O~,] = 0c -- 0d; [33] 

and 

fluid 

0~ 
Ac[0c, (V 1 - - -  (0¢ - 0d); [34] 

- - V ~ ) O c . ]  = ~ 0 ~ , ~  1 - ot 

where 

Ad =~RePrTk and Ac =~RePr.  [35] 

We note at this point that the energy equations under the present assumptions are independent 
of  the velocity distribution in the horizontal direction. Since V, I'd and V¢ are constants, the system 
[33, 34] is a system of linear partial differential equations with the boundary conditions formulated 
at the interface r / =  0 and at infinity q = oo. 

In the following sections we will consider the temperature distribution in the phases for some 
simple streaming motions of the mixture over a heated horizontal plate at zero incidence. 

3. S T A T I O N A R Y  T E M P E R A T U R E  D I S T R I B U T I O N  

We first consider a mixture flow over a horizontal plate maintained at a constant temperature 
Tw. We assume that both phases are at thermal equilibrium, having a common temperature To~ 
at infinity (see figure 1). The energy equations and the boundary conditions governing the 
stationary temperature distribution in this case are as follows: 

- - A d ( V  - -  Vd)O'd ---~ 0c -- 0d, [36] 

- - A c ( V - -  Vc)O'~ xa,, ~ ( 0 c -  0d), [37] = 3v~ -- 1----L~ ~ 

q = 0: 0~ = 1 [38] 

and 

~/= oo: 0d = 0c = 0, [39] 
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) x  

F igure  1. P rob lem definit ion.  

where primes denote derivatives with respect to ~/. The system of energy equations is thus reduced 
to a system of ordinary differential equations with constant coefficients. The general solution is 
obtained by finding the roots of the corresponding characteristic equation, an algebraic equation 
of the third degree. All three roots of the equation are real: 

r~ = 0, r 2 > 0 and r3 < 0. 

Choosing r~ and r 3 = r < 0, since ~/I> 0, and evaluating the two arbitrary constants by means of 
[38] and [39], we obtain a simple expression for the temperature distribution in the continuous phase 

Oo = e'~. [40] 

The temperature distribution in the particulate phase is then evaluated by means of [28]: 

I 1 2 1 --~t-] 
Od = 1--r -CtAc(V-~ Vc)-r - - ~  J e  'n. [41] 

Stationary temperature distributions in the mixture for various values of the parameters are 
displayed in figures 2-4 which suggest that the depth of penetration of the temperature profiles 
from the interface and the temperature lag of the dispersed phase from that of the continuous one 
are functions of the volume fraction ~t and the particle Reynolds number Re for a given two-phase 
mixture. The three considered examples are mixtures of air, water and oil with metal particles. 

In the case of an air-particle mixture, as m figure 2, the particle temperature has considerable 
lag compared to the temperature of the air, and the depth of penetration of the temperature profiles 
is of order of magnitude of 100 particle radii for a dilute suspension with ~ = 0.001 and Re = 1, 
figure 2(a). By decreasing Re to 0.01, the thickness of the boundary layer is increased to approx. 
200 particle radii, the temperature lag between the phases at the same time becomes smaller, figure 
2(c). Large temperature lags between the phases are thus to be expected in thinner boundary layers. 
The temperature lag of the particulate phase depends on the relaxation time for energy transfer 
and the relative velocity between the phases. When the relaxation time and the relative velocity 
are large, the particles move swiftly through the fluid toward the heated plate, preserving mainly 
the lower temperature of the mixture layers far from the plate. This may be realized by a 
combination of a highdensity ratio, low ~t and a relatively large (though ~< 1) value of Re. At higher 
particle concentrations, the relaxation time for energy transfer becomes shorter and the relative 
velocity between the phases decreases, which results in smaller temperature lags between the 
mixture components. By decreasing Re, we obtain the similar effect of decreasing the temperature 
lag, this time through a decrease in the relative velocity between the phases. 



502 N. APAZIDIS 

100 . . . . . . . . .  100 . . . . . . . . .  

0 
0 (a) 

200 . . . . . . . . .  50 

0 
0 (b) 

50 

i \ 

(c) 
0 i . . . .  

o (d) 

50 . . . . . . . . .  

0 
0 (e) 1 

O 

\ 

(0 
8 

F i g u r e  2. S t a t i o n a r y  t e m p e r a t u r e  d i s t r i b u t i o n  in a i r - p a r t i c l e  f low. 7 = 10,000, P r  = 0.7. (a) ~ = 0.001,  
R e =  1; (b) ~, = 0 . 0 0 1 ,  R e = 0 . 1 ;  (c) ~ , - -  0 .001,  R e  = 0 . 0 1 ;  (d) ~ = 0 . 0 1 ,  R e =  1; (e) • = 0 : 0 t ,  R e = 0 . 1 ;  

(f)  ~ = 0.01,  R e  = 0.01.  - -  Air ,  - -  par t ic les .  

Temperature distributions for a mixture of water with metal particles are shown in figure 3. The 
depth of penetration of the temperature profiles in this case varies from I00 to 50,000 particle 
radii, depending on the values of • and Re, and may be up to 50 times the thickness of the 
boundary layer in the previous example at the same values of 0c and Re. The relative velocity 
between the phases is lower than in the case of an air-particle mixture due to a lower value of the 
density ratio, giving small temperature lags, detectable only in thin layers and at high values of 

Re, figure 3(d). 
For oil-particle mixtures, illustrated in figure 4, the density ratio between the phases is the same 

as in the case of water. The value of Pr = 1000 is approx. 140 times that of water. This gives thinner 
boundary layers and larger temperature differences than in the previous case. 
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Figure  3. S t a t iona ry  t empera tu re  d i s t r ibu t ion  in wa te r -pa r t i c l e  flow. y = 10, Pr  = 7. (a) ,, = 0.001, Re  = I; 
(b) ~, = 0.001, Re = 0.1; (c) ~, = 0.001, Re = 0 . 01 ;  (d) u = 0.01, R e =  1; (e) ~, = 0 . 1 ,  Re = 0.1; (f)  ,, = 0 . 1 ,  

Re  = 0.01. D Water ,  - -  part icles.  

4. P E R I O D I C  T E M P E R A T U R E  F I E L D S  

O u r  next example  is mixture  flow over  a periodically heated plate: 

Tw = T~ + (Tw - T~)cos cot; 

or, in nondimensional form, the temperature of the plate varies according to 

O(t, 0) = cos cot. 

[42] 

[43] 
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Figure  4. S t a t iona ry  t empera tu re  d i s t r ibu t ion  in o i l -par t i c le  flow. 7 = 1 0 P r =  1000. (a) ~t =0 .001 ,  
R e = 0 . 1 ;  (b) ct =0 .001 ,  R e = 0 . 0 1 ;  (c) ~t = 0 . 0 0 1 ,  R e = 0 . 0 0 1 ;  (d) ~t = 0 . 0 1 ,  R e = 0 . 0 0 1 ;  (e) e = 0 . 1 ,  

Re  = 0.002; (f) ct = 0.1, Re  = 0.001. - -  Oil, - -  particles.  

Thus, we will consider here a system of two energy equations, 

A d [ O d , -  ( v  - vd)o~.]  = Oo - Od 

and 

- - -  ( 0 c  - 0 a ) ,  Ac[O~, - ( V  - Vc)Oc,] = ~0¢,, 1 - c( 

under the boundary conditions 

and 

Oc(t, 0) = cos cot 

O¢(t, oo)  = Oa(t,  oo)  = O. 

[441 

[45] 

[46l 

[471 
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It is noteworthy that here as well as in the previous case the structure of the equations and the 
boundary conditions is similar to the corresponding problem of the horizontal velocity distribution 
in the phases, compare with Apazidis (1985). We thus seek the solution of [44]-[47] in the same 
form as the solution to the corresponding velocity problem, i.e. 

0 c = cos(cot +/~r/) e r" [48] 

and 

0d = [a COS(cot +/~/) + b sin(cot +/z~/)] e '~. [49] 

Introducing [48] and [49] into [44] and [45] we evaluate the constants a, b,/~ and r similarly to 
Apazidis (1985). The temperature distribution in the phases is then plotted for various values of 
the dimensionless parameters 0c, y, Re and Pr and frequencies co, see figures 5-13. As in the 
stationary case, large temperature differences between the phases are obtained at high values of 
the relative velocity and large relaxation times for energy transfer. Thus, large temperature 
differences may be expected in gas-particle mixtures with low particle concentrations and at high 
values of Re, due to high values of the relative velocity between the components (see figures 5 and 
6), and in oil-particle mixtures, due to high values Pr (figures 11-13). For water-particle mixtures 
when both the relative velocity between the phase and the relaxation time for energy transfer are 
small, the temperature lags become insignificant. The depth of penetration of the temperature 
profiles, on the contrary, becomes larger (figures 8-10). 

5. HEAT FLUXES 

Using the obtained velocity distributions, it is now possible to evaluate the rate of heat transfer 
between the sediment, which has a common temperature with the plate, and the suspension. The 
total heat flux through the interface between the dense sediment and the mixture above it is a sum 
of the convective heat flux of the continuous phase and the sensible heat transfer of the particles: 

q = q~ + qd, [50] 

where 

and 

qo = - ( 1  - ~)ro Toy = - ( 1  - ~ )  rc(Tw- T~) 0~ ~=0 - (1  ~) rc(Tw- T~) 
= - r [ 5 1 ]  

a a 

which gives 

g a  2y . 
qd = O~CdPd(Vd --  v)(Td -- Tw) = ~CdPd ~ t l w  --  T®) (Vd -- V)(0d -- 1), [521 

q -~ c¢p¢ a ( T .  - T=)[-(1 - ~)r + ~k7 RePr(Vd - V)(Od -- 1)] [531 

o r  

with 

~c 
q = c c P c  a (Tw - T ~ ) [ Q c -  Qd], [541 

Qc = - (1  - at)r and Qd = ctkTRePr(Vd - V)(0d -- 1) [55] 

being the dimensionless heat fluxes due to convection and sensible heat transfer, respectively. 
Here, - r  (r < 0) is the Nusselt number for the continuous phase. 

Plots of the dimensionless heat fluxes of the continuous and dispersed phases as well as the total 
ones are displayed in figures 14 and 15. Figures 14(a,b) show heat fluxes, in the case of a gas-particle 
mixture, as a function of ct and at Various values of Re. For low values of Re, as in figure 14(a), 
the total heat flux is almost entirely due to the convective heat transfer of the continuous phase. 
When the value of Re becomes >0.1, as in figures 14(c,d), the situation is reversed and the total 
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co = 0. I .  - -  A i r ,  - -  pa r t i c les .  
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F i g u r e  6. P e r i o d i c  t e m p e r a t u r e  d i s t r i b u t i o n  in a i r - p a r t i c l e  f low.  T = 10,000,  P r  = 0.7,  • = 0 .01,  R e  = 0 .0 l .  
(9 = 0.1. - -  Air~ - -  pa r t i c les .  
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F i g u r e  7. Pe r iod i c  t e m p e r a t u r e  d i s t r i b u t i o n  in  a i r - p a r t i c l e  flow. y = 10,000, P r  --- 0.7,  • = 0 . l ,  Re  ffi 0 .001,  
co --  0.1. - -  Ai r ,  - -  par t ic les .  
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F i g u r e  8. Pe r iod i c  t e m p e r a t u r e  d i s t r i b u t i o n  in warm--pa r t i c l e  f low. y ffi 10, P r  ffi 7, ,, ffi 0 .001,  R e  == 1, 
o~ ffi 0 .001.  - -  W a t e r ,  - -  par t ic les .  
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F i g u r e  9. Pe r iod i c  t e m p e r a t u r e  d i s t r i b u t i o n  in w a t e r - p a r t i c l e  f low. y = 10, P r  = 7, • = 0 .001,  Re  = 0.1, 
co = 0.001.  - -  W a t e r ,  - -  par t ic les .  
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F i g u r e  10. Pe r iod ic  t e m p e r a t u r e  d i s t r i b u t i o n  in w a t e r - p a r t i c l e  
Re  = 0.1 co = 0.01.  - -  W a t e r ,  - -  par t ic les .  
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F i g u r e  11. Pe r iod ic  t e m p e r a t u r e  d i s t r i b u t i o n  in o i l -pa r t i c l e  f low. y = 10, P r  ffi 1000, ~ ffi 0 .001,  Re  ffi 0 . I ,  
co = 0 .0001.  - -  Oil ,  - -  par t ic les .  
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F i g u r e  12. Pe r iod i c  t e m p e r a t u r e  d i s t r i b u t i o n  in o i l -pa r t i c l e  flow. y ffi 10, P r  ffi 1000, ~ = 0 .001,  R e  = 0.01,  
co ffi 0 . 0 0 t .  - -  O i l , - -  par t ic les .  
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F i g u r e  13. P e r i o d i c  t e m p e r a t u r e  d i s t r i b u t i o n  in o i l -pa r t i c l e  f low. V = 10, P r  = 1000, a = 0.01,  R e  = 0 .01,  
co = 0.001.  - -  Oil ,  - -  par t ic les .  
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F i g u r e  14. H e a t  f luxes vs v o l u m e  f r a c t i o n  o f  par t i c les  in a i r - p a r t i c l e  f low. ~, = 10,000,  P r  = 0 . 7 .  
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Figure  15. Hea t  fluxes vs v o l u m e  f ract ion o f  partielea. (a) Wate r -pa r t i c l e  mixture ,  y = 10, Pr  -- 7, Re  -- 0.1; 
(b) ~, = I0, Pr  - - 7 ,  R e  = 1. (c) Oi l -par t ic le  mixture ,  ? = 10, Pr  = 1000, Re  = 0.001. (d) Oi l -par t ic le  mixture ,  
y = 10, P r =  1000, R e = 0 , 0 1 ,  (e) Oil--particle mixture ,  ~ = 10, P r - - I 0 0 0 ,  R e = 0 . 0 1 .  (f) Oi l -par t ic le  

mixture ,  y = 10, P r ,=  1000, Re  = 0.5. - -  Liquid,  - - -  particles,  - .  - total.  

heat flux stems mainly fromthe sensible heat transfer due to particle impingement on the sediment 
layer. At greater values of Re+ the relative velocity increases and the particles need less time to travel 
through the region of the thermal boundary layer, thus preserving the lower temperature of the 
regions away from the interface, see figures 2(a,b). This results in a greater temperature difference 
between the impinging particles and the sediment and thus a higher rate of heat transfer. 

Figure 13 shows heat fluxes for water-particle and oil-particle mixtures as a function of ~. Here 
the density ratio between the fluid and solid phases is the same but the value of Pr for oil is chosen 
to be 140 times greater than for water. Consequently, the tldckness of the thermal boundary layer 
for the oil-particle mixture, at the same values of g and Re, approx. 100 times less than for the 
water-particle suspension, cf. figures 3(b) and 4(a). The heat flux in water-particle mixtures is thus 
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mainly due to the convective heat transfer in the continuous phase, whereas in the case of 
oil-particle mixtures this is true only at low values of the particle Re, as in figure 15(c). At 
higher values of Re the heat flux becomes dominated by the sensible heat transfer of the particles, 
see figure 15(f). 

Figures 14 and 15 also suggest that the rate of heat transfer in the suspension does not simply 
increase with an increase in ~, but reaches a maximum at a value of ~ = 0.2 and decreases with 
a further increase in ~. This has a straightforward explanation in cases when the heat flux is mainly 
due to the sensible heat transfer of particles. According to [55] the sensible heat transfer of 
impinging particles is proportional to the volume fraction of the particles, the relative velocity 
between the particles and the interface and the temperature difference between the particles and 
the interface. An increase in ~ initially gives an increase in the heat flux rate. An increase in ~ leads, 
however, to an increase in the interaction force between the phases, which results in lower values 
of the relative velocity and an increase in the times needed for particles to travel through the 
boundary layer region, and thus smaller temperature differences between the impinging particles 
and the interface. At a certain value of ~ the effect of a decrease in the values of the relative velocity 
and temperature difference becomes greater than the effect of an increase in ~ on the heat flux and 
the heat flux diminishes. 

A maximum of the heat transfer rate exists, however, also in the cases when the heat flux is 
mainly due to a convective heat transfer in the continuous phase, as in figures 14(a) and 15(a,c). 
Dimensionless convective heat flux is, according to [55], equal to the volume fraction of the 
continuous phase times the Nusselt number, or the dimensionless temperature gradient of the 
continuous phase at the interface. An increase in ~ leads initially to an increase in the heat transfer 
between the phases, which results in higher temperature gradients in the continuous phase at 
the interface. A further increase in ~ gives, however, lower values of the relative velocity between 
the phases and thus lower temperature differences, leading to lower temperature gradients in the 
continuous phase at the interface. 

6. CONCLUSIONS 

An analysis of the temperature distribution and heat transfer in a laminar two-phase mixture 
flow over a heated horizontal plate has been carried out. We summarize here the main items of 
the present investigation. 

(1) The temperature profiles of both phases span over a region existing at the 
interface between the dense sediment collected on the plate and the mixture 
above it. This region, together with the interface, propagates in the upward 
direction with a constant velocity, defined by the particle size and concentration 
as well as the density ratio between the phases. 

(2) The vertical motion of the phases and of the interface is independent of the 
horizontal motion and allows a temperature distribution with a structure more 
simple than its single-phase counterpart and similar to the velocity distribution 
over a flat plate at zero incidence with uniform suction. Unlike the single-phase 
case, the temperature profiles in the two-phase mixture are independent of the 
distance along the plate. Another simplification, as compared with the single- 
phase case, is that the temperature distribution in the two-phase boundary layer 
is independent of the horizontal velocity components of the phases. 

(3) Large temperature differences between the phases are to be found in thin (20-100 
particle radii) boundary layers which exist at high density ratios between the 
phases (heavy particles in gas), large values of Re (large particle sizes) or high 
values of Pr (oil-particle mixtures). 

(4) Thick boundary layers (100 particle radii and more) exist at low particle 
concentrations (of order of 0.01), lower values of the density ratio (e.g. particles 
in liquids), low values of Pr (water-particle mixtures) and low values of Re (small 
particle sizes). 

(5) The total heat flux in the two-phase mixture is not simply increased by an increase 
in ~, but reaches a maximum at ~ = 0.2 and decreases with a further increase in ~. 
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